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Abstract
The misunderstanding of hydrogeological processes together with the oversimplification of aquifer conceptual models result in
numerous inaccuracies in the management of groundwater resources. In Central Chile (32–36°S), hydrogeological studies have
exclusively focused to alluvial aquifers in valleys (~15% of total area) and mountain-front zones remain considered as no-flux
boundary conditions. By a topological approach and an analysis of fractures, the hydrogeological potential of the Western
Andean Front along the N–S-oriented Pocuro Fault Zone (PFZ) in the Aconcagua Basin were determined. Perennial springs
(23) show evidence of groundwater flows into the fractured Principal Cordillera. Topology allows for quantification of the
density of connected fractures within the fault zone and its relationship with groundwater circulation. The study results highlight
two areas where the density of fractures and connected nodes (Nc) is high (>2.4 km/km2, 2.5 Nc/km2). Both areas are topolog-
ically related to the main springs of the PFZ: Termas de Jahuel (discharge ~14.0 m3/h at 22 °C) and Termas El Corazón
(discharge ~7.2 m3/h at 20 °C). Outcrop-scale mapping reveals that groundwater outflows from NW–SE fractures, which is
consistent with the preferential orientation of the fracture network (N30–60 W) within the PFZ. The results indicate that oblique
basement faults are discrete high-permeability structures conducting groundwater across the Western Andean Front from the
Principal Cordillera up to adjacent alluvial aquifers (focused recharge). Therefore, the simplistic hydrogeological view of the
Western Andean Front (i.e. impervious limit) is partially erroneous.
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Introduction

In arid regions, the sustainable exploitation of groundwater re-
sources is limited by a misunderstanding of the hydrogeological
processes (e.g. groundwater recharge; Simmers 1997; de Vries

and Simmers 2002; Scanlon et al. 2006; Healy and Scanlon
2010), which leads to unsuitable management policies, making
groundwater resources and related social-economic activities vul-
nerable to abrupt climate changes (Custodio 2002; Massuel and
Riaux 2017; Taylor et al. 2019).

In Chile, the hydrogeological studies have been generally
focused on alluvial aquifers located in valleys and basin floors
(Muñoz et al. 2003; Rojas and Dassargues 2007; Oyarzún et al.
2014; Jordan et al. 2015; Ribeiro et al. 2015; Muñoz et al. 2016;
Oyarzún et al. 2016; Salas et al. 2016; Fernández et al. 2017;
Urrutia et al. 2018; Viguier et al. 2018, 2019; Valois et al. 2020),
whilst such lithologies solely constitute ~15% of total area of
Chile (SERNAGEOMIN 2003). In Central Chile (32–36°S;
Fig. 1a), the hydrogeological relations between alluvial sedi-
ments and surrounding rocks have remained unstudied because
observation boreholes are missing from themountain front zones
(regionally named Western Andean Front; Rauld 2011). As a
result, the recharge from lateral fractured rocks has been
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arbitrarily discarded from hydrogeological conceptual models
leading to an oversimplification of the boundary conditions.
Indeed, the Western Andean Front, separating the Central
Depression from the Principal Cordillera (Fig. 1a), is considered
as no-flux boundary conditions in the numerical modeling of
adjacent alluvial aquifers (DGA 2015, 2016, 2019a). The
groundwater recharge of Central Chile aquifers is exclusively
considered from meteoric water infiltration and river losses
(DGA 2015, 2016, 2019a).

Nevertheless, the Western Andean Front (Fig. 1a) hosts nu-
merous springs with perennial outflows (Hauser 1997;
Bustamante et al. 2012; Benavente et al. 2016). The occurrence
of those springs suggests that groundwater circulates into the
mountain block through fractures and contributes to recharge of
the adjacent Central Depression alluvial aquifers (Taucare et al.
2020). Indeed, mountain-block recharge is a major component in
the renewal of lowland alluvial aquifers adjacent to the mountain
ranges (Wilson and Guan 2004; Aishlin and McNamara 2011;
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Fig. 1 a Morphotectonic context and cross-section (A–A′) of the Andes
of Central Chile (based on SERNAGEOMIN 2003): in green the Coastal
Cordillera, in pale-yellow the Central Depression and in orange the
Principal Cordillera. The N–S-oriented west vergent thrust system

(WTS) shapes the Western Andean Front. b Geological map of the study
area highlighting the major springs: Termas de Jahuel (Jh) and Termas El
Corazón (TEC). The lithological information is based on Rivano et al.
(1993), Jara and Charrier (2014), and Boyce et al. (2020)
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Gillespie et al. 2012; Nelson and Mayo 2014; Bresciani et al.
2018; Peng et al. 2018; Markovich et al. 2019; Gleason et al.
2020). Mountain-block recharge occurs by diffuse flows along
the mountain front as well as by focused flows through oblique
faults crossing the mountain front (Wilson and Guan 2004;
Kebede et al. 2008; Taillefer et al. 2018; Markovich et al.
2019; Walter et al. 2019). In fact, the Western Andean Front
(Fig. 1a), shaped by major N–S-oriented thrust-fold structures
(Armijo et al. 2010; Farías et al. 2010; Vargas et al. 2014), is
also segmented by oblique faults (Cembrano and Lara 2009;
Piquer et al. 2017; Veloso et al. 2019; Yañez and Rivera
2019). Consequently, the assumption that fractured rocks and
oblique faults are contributing to recharge of adjacent alluvial
aquifers is highly plausible although it has not been characterized
yet in Central Chile.

Since 2010 Central Chile has undergone a “megadrought”
(Garreaud et al. 2017, 2019) impacting the availability of
groundwater resources. This alarming situation, together with
increasing social tensions (Rivera et al. 2016), makes it nec-
essary to reevaluate the hydrogeological conceptual models in
Central Chile, especially the role of theWestern Andean Front
in the recharge of adjacent alluvial aquifers.

Therefore, this study aims to assess the hydrogeological
potential of theWestern Andean Front, exploring the topolog-
ical relation between the fracture network and perennial
groundwater outflows (springs), in the Aconcagua Basin and
the Pocuro Fault zone (Fig. 1b). Results will allow verification
of the hypothesis of groundwater circulation in discrete per-
meable structures (e.g. fractures, faults). In addition, the find-
ings could be used in future studies as the basis for quantifying
the mountain-block recharge from the Western Andean Front.

Hydrogeological setting

Central Chile (32–36°S) is segmented into three major N–S-
oriented morphotectonic domains (Cembrano et al. 2007),
identified from west to east as (Fig. 1a): (1) the Coastal
Cordillera (up to 2,000 m above sea level, asl) mainly com-
posed of Mesozoic volcano-sedimentary and intrusive rocks
(e.g. Las Chilcas Fm and Lo Valle Fm), (2) the Central
Depression (~570 m asl) filled by Quaternary alluvial sedi-
ments with an average thickness of ~300 m (Yáñez et al.
2015), and (3) the Principal Cordillera (up to 5,000–6,000 m
asl) mainly composed of Cenozoic volcano-sedimentary and
intrusive rocks (e.g. Abanico Fm. and Farellones Fm.). Those
morphotectonic domains were developed by N–S-oriented
major faults (Giambiagi et al. 2003; Charrier et al. 2007) seg-
mented by NW-oriented (i.e. NW–SE) and NE-oriented (i.e.
NE–SW) faults (Cembrano and Lara 2009; Piquer et al. 2017;
Veloso et al. 2019; Yáñez and Rivera 2019).

The studied segment of the Western Andean Front is locat-
ed in the Aconcagua Basin, at 32°50′S (Fig. 1b). It is shaped

by the Pocuro Fault Zone (PFZ; Carter and Aguirre 1965), a
brittle deformation zone 150 km long and 4 km wide. At least
23 perennial springs outflow in the Western Andean Front
through fractures. Springs are fed by the indirect infiltration
(in gullies) of rain and snowmelt occurring above 2,000 m asl
in the Principal Cordillera (Taucare et al. 2020). In this zone,
Darwin (1839) described the two major springs of the study
area: Termas de Jahuel (22 °C) and Termas El Corazón
(20 °C). The mean spring discharges are ~14.0 and ~ 7.2 m3/
h, respectively. In both cases, groundwater is used for thermal-
bath activities and mineral water bottling (Daniele et al. 2019).
To increase groundwater discharge at both springs, galleries
ranging from 7 to 30 m long were excavated into the volcano-
sedimentary rocks.

The study area is characterized by a semi-arid climate with
historic (1980–2010) mean annual precipitation of 270 mm/year
in the Central Depression and 525 mm/year in the Principal
Cordillera (hydrological data provided by Dirección General
de Aguas, DGA 2019b). In the Western Andean Front, mean
annual air temperature at the ground surface is ~15 °C. Since
2010, Central Chile has been experiencing an uninterrupted se-
quence of dry years with a rainfall deficit up to 45% relative to
the historic period (Garreaud et al. 2017, 2019). Historically,
surface water from the Aconcagua River was distributed by
gravity-driven channels for family farming activities; however,
since the late 1980s, for supplying intensive farming activities
(e.g. grapes and avocados), groundwater is mainly extracted by
deep boreholes (200–300 m depth) from the San Felipe aquifer
contained in the Quaternary alluvial deposits of the Central
Depression (Fig. 1b). Between 1980 and 2018, the authorized
groundwater extraction increased by around 3,640%, from 0.33
to 12.33 m3/s (Taucare et al. 2020 after DGA 2019b). Ongoing
megadrought, together with the increasing groundwater extrac-
tion, has caused the decline of groundwater levels up to 40 m
(DGA 2019b), strengthening the risk of groundwater resource
depletion.

Topological approach

In fractured aquifers, preferential flow-paths take placewithin the
fracture network,which can be described in terms of connectivity
and density of fractures (Berkowitz 2002; Manzocchi 2002;
Makel 2007; Maillot et al. 2016; Viswanathan et al. 2018).
Thus, the mentioned flow-paths can be properly addressed using
a topological approach (Sævik and Nixon 2017). This approach
was used to assess the impact of the fracture network on the
hydraulic connectivity in crystalline rocks (Zuluaga et al. 2018)
and carbonate rocks (Fournillon et al. 2012; Dimmen et al. 2017;
Aliouache et al. 2019). Nevertheless, the topological approach is
not commonly used for the exploration of groundwater resources
in mountain front zones.
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The topological approach uses components, such as
“nodes” and “branches” (Jing and Stephansson 1997;
Sanderson and Nixon 2015, 2018): A “node” is a point where
a line ends or intersects another line (Fig. 2). A “node” can be
classified as isolated (I-node), abutting (Y-node), or as cross-
ing nodes (X-node). A “branch” is a line bounded by an iso-
lated node (I-) or a connecting node (Y- or X-) (Fig. 2), and it
can be classified as an isolated (I–I), partially connected (C–I),
fully connected (C–C) branch, but also as an unknown branch
(Unk) when this latter intersects the limits of the study area.

At the scale of the study area (650 km2; Fig. 1a), the topo-
logical approach was conducted by the digitalization of
morphostructural lineaments such as fractures and faults
(n = 216) from a high-resolution photomosaic extracted from
Google Earth (pixel size ≈2.5 m) and supported by field sur-
veys (Fig. 3a). The spatial distribution of the fracture network
topological parameters was processed by a geographic infor-
mation system (GIS), using the NetworkGT tool developed by
Nyberg et al. (2018). A total of 472 nodes and 511 branches
were extracted from the fracture network (Fig. 3b): 228 I-

nodes, 194 Y-nodes and 50 X-nodes as well as 25 I–I
branches, 169 C–I branches, 305 C–C branches and 12 Unk
branches. Because groundwater circulates in connected frac-
tures (Makel 2007), only connected branches (C–I and C–C)
and connecting nodes (Y- and X-) were further considered.
Using a Kernel density tool (e.g. Dimmen et al. 2017), the
spatial distribution is shown for the following parameters in
the PFZ: (1) the density of fractures, which involves the total
branch length per surface unit (km/km2), and (2) the density of
connected nodes, which illustrates the number of connected
nodes (Nc = Y-node + X-node) per surface unit (Nc/km2). In
addition, fracture analyses were carried out at the outcrop
scale in two areas within the PFZ, at Termas El Corazón
(n = 152) in the Abanico Fm., and at 5 km to the east of
Termas de Jahuel (n = 45) in the Las Chilcas Fm. Both areas
(~200 m2) have well-preserved outcrops that enable a three-
dimensional (3D) view (cross section and plan-view) of the
fracture network.

Results

At the scale of the study area, the analysis of the fracture
network shows that the damage zone of PFZ is governed by
a N30–60 W preferential orientation (Fig. 3a). At the outcrop
scale, a well-defined N30–50 W preferential orientation char-
acterizes the fracture network near Termas de Jahuel, while no
one preferential orientation pattern is observed in Termas El
Corazón (Fig. 3c). This missing preferential orientation pat-
tern may result from the PFZ complexity related to the differ-
ent tectonic events (Jara and Charrier 2014; Taucare et al.
2018). However, into both galleries, excavated for increasing
the groundwater discharge, it was observed that groundwater
outflows from N40–60 W fractures (e.g. Fig. 4b). At Termas
El Corazón, the NW-oriented fractures are associated to an
oblique basement fault that controls the landscape in the gully
orientation, where several springs outflow (Fig. 4a). At about
Termas de Jahuel, the spring is related to buried oblique base-
ment faults (local landslide), which outcrop to the east, as can
be seen in the geological map of Fig. 1b.

The topological analysis highlights two areas of high den-
sity of connected fractures (Fig. 3c) and connected nodes (Fig.

Fig. 2 Topological nomenclature for fracture network characterization
after Sanderson and Nixon (2015). a Trace map of a fracture network,
and b its topological characterization

�Fig. 3 Topological analysis of the fracture network in the Pocuro Fault
Zone (PFZ). a Fracture network of PFZ; the different orientations are
highlighted in different colours. Rose diagram shows the orientation of
216 mapped lineaments with bin size 10°. b Topological characterization
of the fracture network. c Contour map showing the density of connected
branches (C-I and C-C branch). Rose diagrams (bin size 10°) show the
orientation of 45 and 152 fractures mapped from representative areas at
Termas El Corazón and to the east of Termas de Jahuel. d Contour map
showing the density of connected nodes (Nc = Y-node + X-node).
Coordinate system WGS84-Utm19s. Major springs are highlighted:
Termas de Jahuel (Jh) and Termas El Corazón (TEC)
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3d), both related to the main springs of the PFZ. The first one,
related to the area in the east of Termas de Jahuel (<5 km),
shows a density of fractures and connected nodes reaching
2.4 km/km2 and 2.5 Nc/km2, respectively; while the second
one, related to Termas El Corazón, shows a density of frac-
tures and connected nodes reaching 3.3 km/km2 and 5.5 Nc/
km2, respectively.

Discussion

The observed topological relation between the density of frac-
tures, connected nodes and springs, together with the observed
congruence between the orientation of fractures in both gal-
leries and areas into the PFZ damage zone, indicates that the
NW orientation is a main groundwater-drainage axis. NW-
fractures, oblique to the main N–S-oriented fault trace of
PFZ, would drain most groundwater into the PFZ damage
zone, taking advantage of a higher density of connected frac-
tures than into the Principal Cordillera (Fig. 3c,d). Oyarzún

et al. (2017) and Piquer et al. (2019) showed that in Central
Chile, the NW- and NE-oriented oblique basement faults are
spatially related to the main springs and shallow groundwater
circulation in hard rocks, but also to some productive wells
(some of them discharging greater than 36 m3/h; Oyarzún
et al. 2017). Yáñez et al. (2015) demonstrated by geophysical
exploration (gravity surveys supported by magnetic and
geoelectrical surveys) that NW- and NE-fractures, structurally
related to basement faults and oblique to the Western Andean
Front, are continued into the Central Depression below the
Quaternary cover. At a regional scale, the preferential circula-
tion of fluids (including hydrothermal fluids) along the
oblique basement faults is due to a N–S preferential extension
direction leading to the opening of interconnected fractures
along these faults, with respect to the main E–W compression
of the Nazca plate subduction (Veloso et al. 2019). Therefore,
the oblique basement faults are discrete high-permeability ax-
es crossing the PFZ and contributing likely to recharge of the
San Felipe aquifer in the Central Depression (Fig. 5).

This hydrogeological consideration agrees with mountain-
front conceptual models (Wilson and Guan 2004; Markovich
et al. 2019). These conceptual models highlight the role of
oblique faults (crossing the mountain front zone) in the fo-
cused recharge of adjacent alluvial aquifers by conducting
groundwater circulation originating from the fractured moun-
tain block (Fig. 5). Such a recharge process was likewise ob-
served in other mountain-front zones such as in the Basin and
Range Province of USA (Wilson and Guan 2004), East
African Rift Valley (Kebede et al. 2008; Walter et al. 2019)
and in the eastern part of the Pyrenean range in Europe
(Taillefer et al. 2018).

Consequently, the hydrogeological insights defined for the
PFZ in the Aconcagua Basin (strengthened by results acquired
at different scales) allow transposing this groundwater re-
charge process to the whole Western Andean Front in
Central Chile.

Deep flows, originating from the Principal Cordillera and
circulating through basement faults, have probably long resi-
dence times (regional groundwater circulation) and may con-
stitute nonrenewable groundwater resources. Thus, the re-
charge of adjacent alluvial aquifers caused by deep flows
through oblique basement faults is expected to be little im-
pacted by the current megadrought (Garreaud et al. 2017,
2019). However, most springs are fed by shallower flows that
originate from the focused infiltration of precipitation and
snowmelt taking place above 2000 m asl in the Western
Andean Front (Taucare et al. 2020). Those springs are more
vulnerable to short-term hydroclimatic changes. Therefore,
the decrease over the last decade in both precipitation rates
(Garreaud et al. 2017, 2019) and snowpack in high elevation
Andes (Ohlanders et al. 2013; Ruiz-Pereira and Veetil 2019)
is expected to have a dramatic impact on the availability of
groundwater resources along the Western Andean Front. As a

b SN

a SWNE

Fig. 4 a Spring locations along a fault-controlled gully at Termas El
Corazón. b Groundwater outflowing from an oblique basement fault in
the Termas El Corazón gallery
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consequence, the local communities dependent on this re-
source for drinking water supply and agricultural activities
will be affected.

Conclusion

Exploring the topological relations between fractures and pe-
rennial springs in the Pocuro Fault Zone at Aconcagua Basin,
this study determined that the current and simplistic
hydrogeological view of the Western Andean Front (i.e. an
impervious limit) is erroneous. Unlike this former conceptual
view, this study finds that the high density of connected frac-
tures in the PFZ constitutes a fractured aquifer and the oblique
basement faults allow drainage of groundwater from the
Principal Cordillera. Independent of the temporal relationship
between the faults, the oblique basement faults crossing the
main N–S-oriented fault trace of PFZ control the groundwater
circulation and contribute to recharge of the adjacent alluvial
aquifers in the Central Depression (focused process). This
conclusion is in line to results obtained in Central Chile as
well as in other mountain-front zones around the world.
Hence, given the similar morphotectonic setting exhibited
along the Andes, this model is suitable for Central Chile.

Therefore, taking into account the increasing climatic and
anthropogenic pressures in Central Chile, this work suggests a
thorough revision of the hydrogeological conceptual models.

These new insights into the hydrogeological system will help
to better assess the water resource management policies in
Chile. Further research is still required to improve the quanti-
fication of groundwater recharge and to characterize ground-
water vulnerability to near-future hydroclimatic changes.
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